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TherapeuTic advances in 
neurological disorders

Diabetic peripheral neuropathy and 
neuropathic pain
According to the latest reports of the International 
Diabetes Federation Diabetes Atlas 10th edition, 
537 million adults are living with diabetes glob-
ally, and the number is continually increasing.1 
Diabetic peripheral neuropathy (DPN) is one  
of the most common complications of diabetes.  
It has been reported that more than 50% of  
individuals with diabetes will develop diabetic 
neuropathy over time. However, due to its heter-
ogeneity, the prevalence of DPN is highly depend-
ent on multiple factors, including the type of 

diabetes, age, disease duration, disease severity, 
country, and access to modern treatment.2 A 
recent worldwide meta-analysis consisting of 29 
studies with a total of 50,112 participants reported 
that patients with type 2 diabetes had a greater 
incidence of DPN (31.5% [95% CI 24.4–38.6]) 
than did those with type 1 diabetes (17.5% [13.1–
36.5]).3 With respect to age and diabetes dura-
tion, the prevalence of DPN is reportedly lower in 
adolescents than in adults.4,5 According to an 
international study, including 2733 subjects with 
type 2 diabetes from 14 countries, the DPN inci-
dence varies greatly between different countries, 
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Abstract: Diabetic peripheral neuropathy (DPN) is one of the most common complications 
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ranging from 0.58% to 79.55%.6 With such a 
large patient population, DPN has a negative 
physical and psychological impact on people and 
their families as well as posing financial strains on 
health care and society. The variation in preva-
lence may also be associated with different assess-
ment methods and definitions of DPN.7 While 
separate definitions for different varieties of DPN 
exist, an internationally acknowledged simple 
definition of DPN for clinical practice was pro-
posed as ‘the presence of symptoms and/or signs 
of peripheral nerve dysfunction in people with 
diabetes after the exclusion of other causes’.8,9

The clinical presentations of DPN are diverse, 
with sensory nervous system involvement being 
the most common, mainly manifesting as numb-
ness and pain. As the most distressing symptom 
of DPN, neuropathic pain seriously affects qual-
ity of life and is the main cause of medical treat-
ment. The estimated prevalence of DPN pain 
(DPNP) in patients with diabetes ranges between 
6% and 34%.10 In addition to common spontane-
ous pain, there are forms of evoked pain, includ-
ing hyperalgesia and allodynia. The diverse 
manifestations imply the existence of complex 
underlying pathophysiological mechanisms, 
which are associated with the involvement of the 
multilevel nervous system and various properties 
of nerve impairments (Figure 1).

Complex pathophysiological mechanisms
Although the mechanisms of DPN are not fully 
understood, there are some proposed pathophysi-
ological alterations underlying peripheral nerve 
injury in diabetes patients.

According to current experimental and clinical 
studies, hyperglycemia-mediated cellular injury is 
likely the central factor in DPN.11–13 Increased 
glucose metabolism results in overactivation of 
the hexosamine,14 polyol,15 and protein kinase C 
pathways,16 as well as excessive generation of 
advanced glycation end products (AGEs) and/or 
receptor-associated AGE activation (RAGE).17 
The interaction between AGEs and their receptor 
(RAGE) further activates intracellular signaling 
pathways.18 Oxidative stress, activation of inflam-
mation, dysfunction of Na+/K+ ATPase activity, 
and nuclear DNA degradation are involved in the 
above pathways, leading to neurovascular dys-
function and nerve conduction deficits.14–20,

Disturbance of lipid metabolism is also involved 
in the development of DPN.21,22 Like hyperglyce-
mia, dyslipidemia is also associated with the 
release of proinflammatory cytokines and 
chemokines, causing inflammation-mediated and 
immune-mediated neurotoxicity.23–25 Other 
pathophysiological changes also include micro-
vascular dysfunction,26 endoplasmic reticulum 
stress,27 and mitochondrial dysfunction.28

The pathways involved in metabolic abnormali-
ties are also injurious to Schwann cells, which are 
essential for the structural and functional integ-
rity of the peripheral nervous system (PNS).29 As 
such, Schwannopathy has become an integral fac-
tor in the pathogenesis of DPN, and interactions 
between Schwann cells, axons, and microvessels 
have been proposed to be intimately associated 
with DPN29,30 (Figure 1).

Multilevel nervous system involvement
Recent reports have revealed that the pathological 
changes in DPN patients are not limited to, as per 
the traditional view, the PNS. A number of MRI 
studies have implicated the central nervous sys-
tem (CNS) in the pathogenesis of DPN, includ-
ing decreased cross-sectional spinal cord area,31,32 
decreased numbers of fibers connecting the brain-
stem with the somatosensory cortex,33 abnormal 
thalamic function, and parenchymal atrophy in 
the primary sensory cortex.34,35 Likewise, the evo-
lution of DPNP has been shown to involve multi-
level sensory nervous system lesions. These range 
from peripheral nerves to the dorsal horn to 
higher regions of the CNS36 (Figure 1). 
Understanding the role of the CNS in the devel-
opment of DPN or DPNP is highly important, 
especially given that it is not certain that CNS 
involvement results from the progression of PNS 
impairment, from the direct insult of diabetes, or 
from a combination of both. This question deter-
mines, to a large degree, the main level of thera-
peutic targets.

Different patterns of nerve impairment
DPN has different patterns of nerve impairment, 
including distal symmetric polyneuropathy, small-
fiber-predominant neuropathy, treatment-induced 
neuropathy [Figure 1(a)], radiculoplexopathy or 
radiculopathy [Figure 1(b)], mononeuropathy 
[Figure 1(c)] and autonomic neuropathy [Figure 
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Figure 1. Schematic illustration showing the involvement of the multilevel nervous system (upper panel), 
complex underlying pathophysiological mechanisms (lower, left panel), and different patterns of nerve 
impairment (lower, right panel) in patients with DPN and DPNP. In the upper panel, several pathological 
changes in the CNS have been illustrated at the level of both the spinal dorsal horn and the brain. Myelinated 
afferents (sensory axons that are myelinated by associated Schwann cells) and unmyelinated afferents 
(sensory axons that are grouped into Remak bundles) are shown to be distributed throughout the whole human 
body. The lower, left panel shows that the interactions between Schwann cells, axons, and microvessels have 
been proposed to be intimately associated with DPN. As hyperglycemia-mediated cellular injury is likely the 
central factor in DPN, multiple pathophysiological mechanisms are included in the development of DPN and 
DPNP. Different patterns of nerve impairment in patients with diabetes are displayed in the lower. (a) distal 
symmetric polyneuropathy affecting both sides of the upper and/or lower extremities; a similar pattern is also 
shown in small-fiber-predominant neuropathy and treatment-induced neuropathy; (b) radiculoplexopathy or 
radiculopathy; (c) mononeuropathy or multiplex mononeuritis affecting single or multiple peripheral nerves; 
(d) autonomic neuropathy affecting multiple organs of the cardiovascular system, digestive system, and 
urinary system.
CNS, central nervous system; DPN, diabetic peripheral neuropathy; DPNP, DPN pain.
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1(d)].37 These patterns of nerve involvement are 
closely associated with various nerve impairments, 
including metabolic disturbances, mechanical 
compression, genetic susceptibility, and microcir-
culatory dysfunction.38 Usually, these impairments 
coexist and interact with each other. For example, 
peripheral nerves subject to metabolic injury are 
more vulnerable to local mechanical compres-
sion.38 In addition, interactions between vascular 
and metabolic factors are synchronized with the 
pathogenesis of DPN.39 Thus, in addition to the 
symptoms, course, risk covariates, and pathologi-
cal alterations, the various properties of nerve 
impairment involvement in DPN are another 
important reason for its heterogeneity.

Thus, as a heterogeneous disease, there is no 
medication or treatment modality that is effective 
for all types of DPN and its associated neuro-
pathic pain. The therapeutic regime, which com-
monly includes lifestyle modification, glycemic 
monitoring and management, and control of car-
diovascular risk factors, has not changed signifi-
cantly in recent decades. The current treatments 
for painful DPN focus on symptom relief rather 
than disease modification due to its elusive mech-
anisms. As a consequence, the efficacy of these 
treatments is limited, and the incidence of side 
effects is high. Further research on the underlying 
pathological mechanisms and the development of 
mechanism-based treatment modalities is 
needed.36 In this review, the focus was on nerve 
decompression for treating DPNP with nerve 
entrapment. In addition, the associated theoreti-
cal basis, clinical indications, and progress of 
basic research were discussed.

Search strategy
We searched PubMed for articles published up to 
and including March 2024 using the search terms 
‘diabetic neuropathy’ or ‘diabetic peripheral neu-
ropathy’ in combination with ‘neuropathic pain’, 
‘mechanisms’, ‘diagnosis,’ ‘nerve entrapment’, 
‘surgical decompression’, and ‘nerve decompres-
sion’. We further searched the reference lists of 
publications identified in this research strategy 
and selected those that were judged relevant. We 
focused mainly on publications in English and 
preferentially selected those published in recent 
years but did not exclude widely referenced older 
articles.

Proposal and application of nerve 
decompression
According to the classification of DPNs proposed 
by the Neurodiabetes Consensus (Toronto) 
Group, DPN is separated into generalized poly-
neuropathies and focal (e.g. CN III neuropathy 
and median neuropathy at the wrist from carpal 
tunnel syndrome), as well as its multifocal varie-
ties (e.g. multiple mononeuropathy, lumbosacral, 
thoracic, and cervical radiculoplexus neuropa-
thies).40 Entrapment neuropathies (ENs) are the 
latter type, and the incidence of EN in the dia-
betic population is more than one-third.9 EN 
should be distinguished from mononeuropathies, 
which are other focal neuropathies that result 
from vasculitis and subsequent ischemia or infarc-
tion of nerves and usually have an acute onset and 
self-limiting course.41 Moreover, EN results from 
chronic mechanical compression of peripheral 
nerves, and treatment may include surgery due to 
the chronic onset and progressive course of the 
disease.41,42

Although it is generally accepted that surgical 
decompression of the median nerve at the wrist, 
for carpal tunnel syndrome, or of the ulnar nerve 
at the elbow, for cubital tunnel syndrome, is 
appropriate in the diabetic population, the appli-
cation of this concept to the lower extremity is not 
widespread. The surgical procedure of triple-
nerve decompression for treating nerve entrap-
ment in lower-extremity DPN was first proposed 
by Dellon in 1992 based on the following evi-
dence: (1) The susceptibility of diabetic nerves to 
chronic compression was revealed in animal stud-
ies,43,44 (2) sites of nerve compression in lower 
extremities have been identified in anatomi-
cally,45–48 and (3) axons are more susceptible to 
being compressed distally when proximal 
mechanical compression is present on the same 
axon, and vice versa (‘double-crush’ theory).49,50 
The first two serve as experimental bases for sur-
gical decompression, and the ‘double-crush’ the-
ory provides a theoretical basis for multiple-site 
nerve decompression. The Dellon approach to 
neurolysis for nerves in the lower extremity spe-
cifically includes the common peroneal nerve 
passing through the fibular neck, the superficial 
peroneal nerve in the leg, the deep peroneal nerve 
over the dorsum of the foot, and the tibial nerve 
at the medial ankle.51 From 2000 through the end 
of 2009, more than 360 surgeons were trained to 
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perform this procedure in more than 40 states 
and over 17 countries.38

In prior clinical studies, peripheral nerve decom-
pression for treating DPN has been reported to be 
effective at relieving pain and restoring sensation, 
preventing ulcers and amputations, improving 
quality of life, and changing the natural history of 
DPN.52–58 A multicenter clinical study led by 
Dellon reported that decompression of the tibial 
nerve in DPN patients can prevent ulceration and 
amputation and decrease hospitalization after 
foot infection.59 Nevertheless, earlier clinical 
studies on nerve decompression for DPN were 
mostly retrospective.60 Due to certain flaws in the 
research design, such as the nature of the research, 
selection of the preoperative evaluation indica-
tors, and endpoints, evidence of the effectiveness 
of nerve decompression is still lacking. Therefore, 
in 2006, the Therapeutics and Technology 
Assessment Subcommittee of the American 
Academy of Neurology concluded that the evi-
dence of the efficacy of nerve decompression for 
DPN remained unproven (Level U) due to a lack 
of randomized controlled trials (RCTs).61 
Hopefully, high-quality and well-designed pro-
spective clinical trials will be conducted by schol-
ars in this province.62

Over the last decade, three RCTs assessing the 
efficacy of nerve decompression of lower-extrem-
ity nerves for the treatment of painful DPN have 
been conducted in different countries. The effi-
cacy of nerve decompression for treating painful 
DPN has been advocated in all of these trials. 
The earliest study was reported by Macare et al. 
from the Netherlands in 2014. In this study, nerve 
decompression was performed in a randomly 
selected lower limb, and the other limb served as 
a control. A marked decrease in the visual analog 
score (VAS) for pain was achieved in 73.7% of 42 
patients 1 year after surgery.63 In 2019, another 
single-blinded, parallel-group RCT conducted by 
Best et  al. in Canada reached a similar positive 
conclusion. In this study, 22 patients with painful 
DPN were included and randomized to either 
surgery (n = 12) or nonsurgery (n = 10) groups. 
McGill pain VASs and Neuropathy-Specific 
Quality of Life Scale (NeuroQol) pain items were 
used as coprimary outcomes for pain. At the study 
endpoint of 12 months, although the exact num-
ber of subjects who benefited from nerve decom-
pression was not reported, participants in the 

surgical group had more than three times the 
odds of assessing their pain as ‘better’ compared 
to ‘unchanged’ or ‘worse’ in the control group.64 
The most recent RCT was published in 2024 by 
Rozen et al. from America. In this study, subjects 
were randomized to the nerve decompression or 
observation group (2:1). The decompression 
group patients were further randomized and 
blinded to nerve decompression in either the leg 
or sham surgery in the contralateral leg. Compared 
to controls (n = 37), both the right decompression 
group (n = 22) and the left decompression group 
(n = 18) reported pain improvement at both 12 
and 56 months. Although improvements were 
achieved equally in both the decompressed and 
sham legs at 12 months, the decompressed legs 
had lower mean pain scores than did the sham 
legs at 56 months.65

In these three RCTs, electrophysiological studies 
were only performed in two prior trials,64,66 but 
no marked improvement or change was observed 
in either of these trials. The incidence of surgical 
complications was low in these trials. Macare 
et  al. reported three complications: one had a 
hematoma due to the use of anticoagulants, and 
two had an infected wound at the ankle site.63 In 
the study by Best et  al., surgical complications 
were reported in only one patient who developed 
a postoperative surgical site infection at the tarsal 
tunnel decompression site and was successfully 
treated with oral antibiotic therapy and wound 
care.64 In the latest trial, there was no related 
major complication in either the surgical or obser-
vation-control group. However, 23 minor com-
plications (edema in 4, superficial infection in 7, 
wound dehiscence in 12) were noted in the 
decompressed legs, and 5 were noted in the sham 
legs (superficial infection in 3, wound dehiscence 
in 2).65 In this recent trial, a pain medication 
exploratory analysis was performed with the use 
of the Medication Quantification Scale Version 
III, which is an instrument for quantifying medi-
cation regimen use in chronic pain populations. 
In their analyses, while the surgical group had 
higher scores at baseline and lower means at 12 
and 56 months than did the observation-control 
group, the difference was not significant accord-
ing to mixed-model ANOVAs for the interaction 
of time by group, time, and group.65

The historical hesitance to advocate nerve decom-
pression for DPN has been critiqued in view of 
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recent studies using objective, measured outcome 
protocols.67 As the number of researchers partici-
pating in clinical practice and research on surgical 
decompression for DPN has increased, more 
well-designed RCTs will be conducted and pub-
lished in the near future.68–70

Theoretical evidence, indications, and 
prognostic factors for nerve decompression
The effectiveness of surgery depends largely on 
the correct choice of indications. From the per-
spective of the basis for nerve decompression 
treatment of DPN and DPNP, nerve entrapment 
is the direct indication for surgical decompres-
sion. In addition to the nerve conduction velocity 
across the entrapment site, which is considered 
the gold standard for diagnosis, several potential 
prognostic predictors of a good outcome follow-
ing nerve decompression in patients with DPN 
and DPNP have been reported.

Tinel sign
The Tinel sign was first described by Hoffman 
from Germany and Tinel from France in 1915 and 
was defined as a tingling feeling elicited when an 
injured nerve trunk is percussed at or distal to the 
lesion site.71 This sign indicates the level of regen-
eration or localization of the site of nerve injury. 
After being proposed and applied in clinical prac-
tice, this sign has become associated with the diag-
nosis of carpal tunnel syndrome and other 
compression neuropathies. In 2004, Dellon first 
proposed that a positive Tinel sign is a reliable 
prognostic indicator for a successful outcome from 
decompression of the tibial nerve in patients with 
diabetes with symptomatic neuropathy, as well as 
in patients with symptomatic idiopathic neuropa-
thy.72 This conclusion was further confirmed in a 
multicenter prospective study in which 628 sub-
jects were enrolled, and all the subjects had a posi-
tive Tinel sign over the tibial nerve in the medial 
malleolus. Of these patients, 465 (74%) had a VAS 
score >5. After decompression of the tibial nerve 
and its branches, the mean VAS score decreased 
significantly from 8.5 to 2.0 at 6 months and 
remained at this level for 3.5 years. During this 
same time period, plantar sensibility improvement 
from a loss of protective sensation to recovery of 
some two-point discrimination was also observed.73

Nevertheless, as the value of the Tinel sign in 
assisting in the diagnosis of entrapment has been 

heavily debated, Datema et al. claimed in a nerve 
conduction study that the Tinel sign does not reli-
ably indicate nerve entrapment or neuropathy in 
the legs, concluding that the predictive ability of 
the Tinel sign might be based on mechanisms 
other than the presence of nerve entrapment.74 
Indeed, as initially proposed as a sign indicating 
nerve injury or regeneration, the Tinel sign was 
thought to be associated with the presence of 
young axons in the process of regeneration by 
both Tinel and Hoffman.71,75–80 As with Tinel 
observation of nerve trauma, there is a window 
(8–10 weeks) for signs during the process of nerve 
regeneration.78,79 Dellon reported that in the con-
text of nerve compression, signs transform from 
positive to negative as nerve compression contin-
ues due to the absence of further regeneration.73,81 
For this reason, while the Tinel sign can be used 
as an indicator for localizing the compression site 
in most nerve entrapment cases, the absence of 
the sign does not constitute evidence excluding 
the existence of nerve compression. Therefore, the 
reason why the Tinel sign can be used as a prog-
nostic predictor for a successful outcome from 
nerve decompression in DPN patients may be that 
nerve compression occurs relatively early (Figure 
2). Patients in this stage will undoubtedly benefit 
from the prompt release of compressed nerves.

Distribution and characteristics of pain
In a prior study, the distribution of pain was also 
reported to play a predictive role in the prognosis of 
surgical decompression for DPN patients. Patients 
were divided into two groups according to their 
description of pain distribution. It was found that 
while patients in both the focal and diffuse pain 
groups could benefit from surgical decompression, 
pain relief, and morphological restoration could be 
better achieved in the focal pain group during the 
2 years of follow-up.82 As mentioned above, EN, as 
a subtype of focal DPN, often involves a single 
nerve in the early stages, with focal clinical manifes-
tations. As the disease progresses, both the proxi-
mal and distal segments of the nerve or multiple 
peripheral nerves become involved. This is known 
as the ‘double crush’.83 Furthermore, persistent 
impairment in the PNS is followed by structural 
remodeling and reorganization in the CNS, making 
pain diffuse and chronic.84–86 At this stage, it is dif-
ficult for surgical decompression of peripheral 
nerves to relieve or reverse chronic pain and other 
sensory disturbances resulting from structural and 
functional plasticity in the CNS.
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Alternatively, the nerve fibers responsible for 
transmitting focal pain predominantly consist of 
myelinated fibers, which exhibit heightened sen-
sitivity to mechanical stimuli compared to unmy-
elinated fibers.87,88 Therefore, one can speculate 
that the presence of focal pain suggests the poten-
tial for mechanical compression. In the case of a 
central (spinal cord level) disorder, myelinated 
fibers mediate mechanical allodynia, which has 
also been suggested to be a valuable prognostic 
predictor of nerve decompression in DPNP 
patients.89 In the EN, the association of myeli-
nated fibers with mechanical allodynia indicates, 
to some extent, the association of compression 
injury with mechanical allodynia.

Two-point discrimination
In addition to the Tinel sign and the distribution 
of pain, two-point discrimination could also be a 
potential predictive factor for the prognosis of 

painful DPN after nerve decompression surgery 
in a retrospective study.90 Assessment of two-
point discrimination has been commonly 
employed as a parameter of high-order perceptual 
function since its first proposal by Weber in 
1834.91 As the two-point discrimination thresh-
old is reported to be proportional to the size of the 
area in the brain representing this region, it can 
be used as a quantitative measure to detect the 
loss of nerve function.92 In addition to central 
somatosensory function, the threshold of two-
point discrimination also depends on peripheral 
innervation density.93 Loss or increased sensory 
phenomena, which may present as altered thresh-
olds of two-point discrimination, are early and 
prominent manifestations of DPN, especially at 
compression and entrapment sites.84,90 The com-
plete disappearance of two-point discrimination 
occurs in the advanced stage of compression since 
there is no further regeneration.73,81 Thus, better 
two-point discrimination is thought to be 

Figure 2. A hypothesis diagram illustrating the role of the Tinel sign as a prognostic predictor in nerve 
decompression for DPN patients. A transformation from positive to negative of the Tinel sign might occur in 
the course of DPN. At the early stage of diabetic EN, the Tinel sign will be positive as the irritated peripheral 
nerve still maintains its conduction function. As the compression continues, the conduction of peripheral 
nerves will be blocked without regeneration. The Tinel sign would be negative at this advanced stage. There 
might be an intermediate state of transition in which the boundary between positive and negative Tinel signs 
becomes blurred. Tai Chi Diagram was used here to symbolize the transition between positive and negative 
Tinel signs. It seems difficult to predict the surgical outcome according to the presence or absence of the 
Tinel sign at this intermediate state of transition. Nevertheless, a better surgical outcome will undoubtedly be 
achieved at the early stage.
DPN, diabetic peripheral neuropathy; EN: entrapment neuropathy.
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associated with a relatively early stage of nerve 
compression, and patients in this stage are prone 
to benefit from surgical decompression.

Basic research on the underlying 
mechanisms

Establishment of an animal model and  
the verification of double crushes
Investigations into the mechanistic aspects related 
to surgical decompression for DPN and DPNP 
patients began with the establishment of a rat 
model simulating nerve compression in DPN 
patients.49 In this study, the researchers investi-
gated the impact of single- or double-band place-
ment on neural electrophysiological function in a 
model of sciatic nerve compression. Their find-
ings confirmed that the presence of two simulta-
neous compression sites, or the addition of a 
second compression site either proximal or distal 
to the initial site, resulted in diminished neural 
function compared to a single compression site. 
Based on these findings, multiple nerve decom-
pressions, including the common peroneal nerve, 
deep peroneal nerve, superficial peroneal nerve, 
and posterior tibial nerve, as well as its plantar 
branches, have been proposed for treating nerve 
entrapment in DPN patients.51

Nerve swelling and new connotation  
of ‘double crush’
Peripheral nerve entrapment in DPN patients 
originates from mechanical compression as swol-
len nerves pass through anatomically constrained 
channels. In chronic hyperglycemia, neurons take 
up, via the insulin-independent glucose trans-
porter-1 (GLUT-1 transporter), a greater amount 
of glucose than they normally do under euglyce-
mic conditions.94 When the hexokinase enzyme 
becomes fully saturated due to the elevated level 
of intracellular glucose, the aldose reductase 
pathway is activated to convert excess glucose to 
sorbitol. The accumulation of sorbitol produces 
an osmotic pressure gradient across the intracel-
lular and extracellular membranes, causing axonal 
and nerve trunk swelling by transporting extracel-
lular fluid into neurons.48 Besides the peripheral 
nerves, the surrounding tissues are also subjected 
to degeneration by AGEs, which are accumulated 
by the nonenzymatic glycosylation of proteins.95 
The fibro-osseous tunnels in which the peripheral 
nerves pass become thickened and stiffened as 

AGE-driven changes occur in the connective tis-
sue.48,96,97 Both the swelling inside the nerve and 
the external constraint of the fibro-osseous tun-
nels collaborate to form a ‘double crush’ (Figure 
3). The fibro-osseous tunnels include the carpal 
tunnel (median nerve), cubital tunnel and 
Guyon’s tunnel (ulnar nerve), radial groove 
(radial nerve) in the upper extremity and the fibu-
lar neck (common peroneal nerve), anterior tarsal 
tunnel (deep peroneal nerve), tarsal tunnel (pos-
terior tibial nerve), calcaneal tunnel (calcaneal 
nerve), and medial and lateral plantar tunnel 
(medial and lateral plantar nerve) in the lower 
extremity.41,51,98 This form of ‘double crush’ can 
be simulated in a diabetic rat model by encircling 
the sciatic nerve with a latex tube whose diameter 
is equal to that of the nerve. As the nerve becomes 
swollen under the effect of hyperglycemia, com-
pression impairment of the nerve will occur, and 
the associated behavior will be imitated.47

Peripheral sensitization and central 
reorganization
As the hallmark of neuropathic pain, mechanical 
allodynia, resulting from the paradoxical conver-
sion from innoxious tactile stimulation to pain 
sensation under some pathological conditions, 
commonly occurs in patients with DPN.99 There 
are certain patterns of nerve fiber impairment and 
neuronal activation (at the level of both the dorsal 
root ganglion and spinal dorsal horn) in diabetic 
rats with mechanical allodynia.100 More precisely, 
impairment of primary myelinated fibers and acti-
vation of associated dorsal root ganglion neurons 
are particular features of diabetic rats with MA. 
At the level of the spinal dorsal horn, neuronal 
activation in both the superficial and deep lami-
nae was observed. From the perspective of gate 
control theory,101,102 neuronal activation in deep 
laminae was suggested to result from enhanced 
input of impaired myelinated fibers (peripheral 
sensitization). However, neuronal activation in 
superficial laminae was attributed to the recon-
nection (disinhibition) between low-threshold 
mechanoreceptor inputs and pain transmission 
pathways (central reorganization), which is dis-
connected by inhibitory interneurons under phys-
iological conditions.

It has been acknowledged in prior reports that 
injury or lesion in the PNS could be followed by 
multiple pathophysiological changes in the CNS, 
and both peripheral sensitization and central 
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reorganization were suggested to collaborate for 
the development of neuropathic pain in DPN 
patients.99,103 If there is sufficient evidence of 
peripheral nerve involvement as the initiation 
factor, it would be rational to establish a treat-
ment modality targeting peripheral nerves for 
DPN and DPNP. Taking mechanical allodynia 
in DPN as an example, impairment of myeli-
nated fibers and activation of the associated neu-
rons in the dorsal root ganglion were attributed 
to initiation factors based on the following find-
ings in a diabetic rat model: (1) myelinated fibers 
are vulnerable to mechanical compression104; (2) 
the threshold of mechanical pain is decreased by 
peripheral nerve compression47,105; and (3) 
mechanical allodynia is relieved by removing 
compression.106 These findings also provide 
experimental evidence suggesting that mechani-
cal allodynia is a prognostic predictor of DPN 
and DPNP after nerve decompression.89

Controversy, dilemma, and future direction
Given the traditional concept that medication is 
the mainstream treatment for DPN and that the 
latter is a common complication of diabetes that 
is prone to infection and gangrene, surgical treat-
ment has been subject to numerous doubts and 
disputes since it was proposed. Preliminary clini-
cal observations, studies on relevant mechanisms, 
and outcomes of high-level clinical trials will pro-
vide solid evidence to determine whether surgical 
decompression can effectively treat nerve entrap-
ment in DPN and DPNP patients.

The heterogeneity of DPNP makes the identifica-
tion of underlying pathological mechanisms par-
ticularly important. When a pain symptom 
becomes a disease per se, symptom-based treat-
ment appears insufficient for a disorder that 
should be stratified by mechanism.99 Therefore, 
in addition to the straightforward and intuitive 

Figure 3. Schematic showing ‘double crush’ formed by nerve swelling inside and the thickened fibro-osseous 
tunnels outside, as well as nerve glucose metabolism in both euglycemic and hyperglycemic states. Under 
euglycemic conditions, the size-matching nerve passes through the fibro-osseous tunnels (upper panel). 
Under hyperglycemic conditions, the hexokinase enzyme becomes fully saturated, and the aldose reductase 
pathway is activated to convert excess glucose to sorbitol. The accumulation of sorbitol will produce an 
osmotic pressure gradient across the intracellular and extracellular membranes, causing axonal and nerve 
trunk swelling by transporting extracellular fluid into the neuron. Focal entrapment neuropathy will be 
induced when enlarged nerve trunks pass through size-constrained fibro-osseous tunnels (lower panel).
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notion that ‘where there is compression, there 
should be decompression’,107 actions need to be 
taken to further understand the heterogeneity of 
DPNPs and stratify them based on the various 
mechanisms, explore the indications for treat-
ment, and maximize therapeutic effectiveness. 
The application of neuronal electrophysiological 
biomarkers was recently reported to provide 
effective support for the exploration of mecha-
nisms and phenotype confirmation.108 The disap-
pearance of rate-dependent depression, which is 
the measure of the change in amplitude of the 
H-wave component of the Hoffmann reflex over 
consecutive stimulations, can be used as a bio-
marker to distinguish neuropathic pain caused by 
spinal disinhibition from that of peripheral ori-
gin.109 This discrimination is of great importance 
in clinical practice, as prescribing drugs that tar-
get the CNS when the pain is being generated in 
the PNS is likely to fail.

The combined nerve impairment of diffuse lesions 
and focal compression is almost inevitable in 
DPN. In most cases multiple mechanisms coexist, 
and identifying the dominant mechanisms of 
nerve injury or primary nerve fiber involvement 
would provide a theoretical basis and clinical evi-
dence for justifying the rationale for emerging 
therapies as well as improving their effectiveness.

The limitation of this review is that it mainly 
focuses on the role of nerve decompression in 
treating diabetic sensory disorders, especially 
DPNP, without elaborating on the role of nerve 
decompression in other types of peripheral nerve 
dysfunction, such as motor and autonomic nerve 
dysfunction, as well as microvascular dysfunc-
tion. However, the role of peripheral nerve 
decompression in improving autonomic nerve 
function and relieving microcirculation has been 
extensively described in a recent review.110

Conclusion
Based on experimental investigations and clinical 
evaluations, peripheral nerve decompression pro-
vides an effective option for treating DPN with 
nerve entrapment. Identifying the presence of 
nerve entrapment among complex pathophysio-
logical mechanisms is the key to successful out-
comes. Tinel signs, focal pain, mechanical 
allodynia, and two-point discrimination were 
reported to be prognostic factors for good surgical 

outcomes, and their predictive ability might stem 
from their association with the early stage of EN.
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